Antitumour benzothiazoles. Part 2. ${ }^{1}$ Formation of 2,2'diaminobiphenyls from the decomposition of 2 -(4-azidophenyl)benzazoles in trifluoromethanesulfonic acid

Malcolm F. G. Stevens, ${ }^{*, a}$ Dong-Fang Shi ${ }^{a}$ and Angeles Castro ${ }^{b}$
${ }^{a}$ Cancer Research Laboratories, Department of Pharmaceutical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
${ }^{b}$ Facultad de Farmacia, Universidad de Salamanca, Avda. Campo Charro s/n, 37007 Salamanca, Spain

Abstract

Decomposition of 2-(2-azidophenyl)- and 2-(3-azidophenyl)-benzothiazoles in trifluoromethanesulfonic acid generates π-carbocations. These reactive intermediates have been trapped by triflate anion with the nucleophile substituting para to the original azido group to yield triflate-substituted arylamines. 2-(4-Azidophenyl)-benzothiazoles and -benzoxazoles behave differently: triflate-substituted arylamines are accompanied by symmetrical or unsymmetrical benzazolyl-substituted $2,2^{\prime}$-diaminobiphenyls as major products. These biphenyls have been identified by their characteristic ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. 2,2'Diaminobiphenyls are formed by initial $C-C$ coupling interactions between the π-carbocations and undecomposed 2-(4-azidophenyl)benzazoles and not by benzidine-type rearrangements as originally proposed. Symmetrical 2,2'-diaminobiphenyls have been oxidized by (diacetoxyiodo)benzene to give novel benzazolyl-substituted benzo[c]cinnolines.

Introduction

We have shown previously that polyhydroxylated 2-phenylbenzothiazoles combine some of the structural attributes of hydroxylated flavones, isoflavones and oestrogenic and antioestrogenic stilbenes and exhibit a broad, but mechanistically undefined, spectrum of activities against human tumour cell lines. ${ }^{1}$ Moreover, 2-(4-aminophenyl)benzothiazoles display subtle and selective effects against certain breast cancer cell lines in vitro and in vivo. ${ }^{2}$ In an effort to gain insights into potential routes for metabolism of the bioactive 2-(aminophenyl)benzothiazoles we were interested to track the fate of the nitrenium species, generated from the azidophenyl analogues of these amines, in the presence of nucleophiles.

The decomposition of aryl azides in strong acids such as trifluoromethanesulfonic acid (TFSA) is initiated by heterolysis of the protonated azide to generate mesomeric π-carbocation \leftrightarrow arylnitrenium species (Scheme 1). The synthetic utility

of intramolecular reactions of azides where group R is a metasubstituent bearing a pendant nucleophile has been exploited especially by Abramovitch ${ }^{3}$ and the subject has been reviewed. ${ }^{4}$ When TFSA is employed in an anhydrous solvent mixture of trifluoroacetic acid (TFA) containing trifluoroacetic anhydride (TFAA) at $0^{\circ} \mathrm{C}$ the π-carbocations can be intercepted by triflate anion at ortho- or para-positions to the (incipient) amine. We have shown that the triflate group can be introduced adjacent to a very bulky substituent, often in high yield. ${ }^{5,6}$

We also reported in a preliminary communication ${ }^{7}$ that 2-(4-
azidophenyl)benzothiazoles decompose in TFSA/TFA/TFAA ('triflic mixture') at $0^{\circ} \mathrm{C}$ to afford benzothiazolyl-substituted 2,2'-diaminobiphenyls of a type not previously reported in aryl azide decompositions. The formation of these biphenyls raises intriguing mechanistic questions. We now report in full the results of our extensive studies on the decompositions of 2 (azidophenyl)benzothiazoles and their extension into the related benzoxazole series.

Results and discussion

Synthesis of azidophenylbenzazoles

The starting nitrophenylbenzothiazoles $1-5$ required for this work were prepared by two general routes: either direct condensation of 2-aminobenzenethiol with nitrocarboxylic acids or acid chlorides, or Jacobson cyclisation of nitrosubstituted thiobenzanilides with alkaline potassium ferricyanide. ${ }^{1}$ Reduction of the nitro compounds with tin(II) chloride in ethanol furnished the amines 6-10. Alternatively, the amines 68 and 2-(4-aminophenyl)benzoxazole 11 could be prepared in one step from 2 -aminobenzenethiol or 2 -aminophenol, respectively, and aminobenzoic acids in polyphosphoric acid at $210^{\circ} \mathrm{C}$. The azides $13-19$ were then formed from the amines by conventional diazotisation-azidation.

Decompositions of 2-(azidophenyl)benzazoles

Decomposition of the azide 13 in triflic mixture, followed by ice-aqueous ammonia quench and chromatographic fractionation, yielded the triflate-substituted amine $20(67 \%)$ together with minor amounts of the trifluoroacetylamine 21 and the aminophenol 22. The trifluoroacetylamine was prepared independently from $\mathbf{2 0}$ and TFAA and the phenol by hydrolysis of 21 in boiling 10% aqueous potassium hydroxide. Phenol 22, isolated from the original reaction mixture, is probably generated from 20 during the quenching process.

Decomposition of the azide 14 in triflic mixture furnished a 70% yield of the triflate 23 , together with trifluoromethylsulfonamide 24 and phenol 25 by-products. The sulfonamide 24 arises from an intermolecular $\mathrm{O} \rightarrow \mathrm{N}$ triflate rearrangement of the

primary reaction product 23 , and the phenol 25 is an artefact produced during work-up.

In the cases of those azides where the position para to the azido group is occupied by a benzazolyl residue, simple triflatesubstituted arylamines were only minor products following triflic mixture treatment; instead, 2,2'-diaminobiphenyl compounds were significant and, in some cases, major products. Thus, the azide $\mathbf{1 5}$ afforded a mixture of the simple triflate $\mathbf{2 6}$ (12%) and the biphenyls $40(29 \%)$ and $41(23 \%)$. In a similar manner the azide 16 gave a comparable mixture of triflate 27 (14%) and biphenyls 42 (32%) and 43 (18%).

The 2-(4-azido-2-halogenophenyl)benzothiazoles 17 and 18 differed markedly in their decomposition profiles in triflic mixture. 2-(4-Azido-2-fluorophenyl)benzothiazole 17 gave the expected triflate $28(31 \%)$ together with two isomeric biphenyls $44(11 \%)$ and $45(8 \%)$, neither of which had incorporated a triflate group. In contrast, 2-(4-azido-2-chlorophenyl)benzothiazole 18 afforded two isomeric triflate-substituted arylamines $29(18 \%)$ and $30(25 \%)$, but no $2,2^{\prime}$-diaminobiphenyls were detected despite careful chromatographic fractionation of the reaction mixture. Anomalously, 2-(4-azidophenyl)benzoxazole 19 with triflic mixture gave no triflate-substituted arylamines, but a high yield (66%) of the symmetrical $2,2^{\prime}$-diaminobiphenyl 46 was isolated.

Proof of the structure of the aforementioned compounds comes from their chemical transformations and especially their highly characteristic ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 1 and 2) and FAB mass spectra. The arylamines 26-28, bearing a triflate substituent in the ortho position, rearranged to trifluoromethylsulfonamides $\mathbf{3 1 - 3 3}$, respectively, in boiling 10% aqueous potassium hydroxide, converted into the trifluoroacetylamines 34-36, respectively, with TFAA in TFA and hydrolysed to the aminophenols $37-39$, respectively, in 80% sulfuric acid.

The 'dimeric' structure of the 2,2 '-diaminobiphenyl 40 was initially suggested by the FAB mass spectrum and the symmetrical nature confirmed by the presence of only 13 distinct carbons in the ${ }^{13} \mathrm{C}$ NMR spectrum. The biphenyls 40 and 46 also formed symmetrical diacetyl-derivatives 47 and 48 with acetic anhydride. Significantly, the biphenyls 40,42 and 46
Table 1 Spectroscopic properties of nitro-, amino- and azido-phenylbenzazoles ${ }^{a}$

Compound	$v_{\text {max }} / \mathrm{cm}^{-1}$	$\delta_{\text {H }}$									Others ${ }^{\text {b }}$	$m / z\left(\mathrm{M}^{+}\right)$
		4-H	5-H	6-H	7-H	2^{\prime}-H	$3^{\prime}-\mathrm{H}$	4^{\prime}-H	$5^{\prime}-\mathrm{H}$	$6^{\prime}-\mathrm{H}$		
4	$\begin{aligned} & 3448,1529,1342, \\ & 809,769 \end{aligned}$	$\underset{(7.6)}{8.00, \mathrm{~d}}$	$\begin{gathered} 7.59, \mathrm{td} \\ (8.0,1.2) \end{gathered}$	$\begin{gathered} 7.50, \mathrm{td} \\ (8.1,1.3) \end{gathered}$	$\begin{aligned} & 8.21-8.11 \\ & \mathrm{~m} \end{aligned}$	(F)	$\begin{gathered} 8.21-8.11, \\ \mathrm{~m} \end{gathered}$	$\left(\mathrm{NO}_{2}\right)$	8.21-8.11,	$\begin{aligned} & 8.73-8.67, \\ & \mathrm{~m} \end{aligned}$		274
5	$\begin{aligned} & 3420,1511,1352 \\ & 890,756,724 \end{aligned}$	$\begin{aligned} & 8.01, \mathrm{~d} \\ & (8.0) \end{aligned}$	$\begin{aligned} & 7.59, \text { td } \\ & (7.9,1.3) \end{aligned}$	$\begin{gathered} 7.50, \mathrm{td} \\ (8.0,1.4) \end{gathered}$	$\begin{aligned} & 8.18, \mathrm{~d} \\ & (8.0) \end{aligned}$	(C1)	$\begin{aligned} & 8.44, \mathrm{~d} \\ & (2.3) \end{aligned}$	$\left(\mathrm{NO}_{2}\right)$	$\begin{array}{r} 8.26, \mathrm{dd} \\ (8.8,2.3) \end{array}$	$\begin{aligned} & 8.57, \mathrm{~d} \\ & (8.8) \end{aligned}$	6.40	290
6	$\begin{aligned} & 3464,1612,1580, \\ & 1492,745 \end{aligned}$	$\begin{gathered} 7.87, \mathrm{~d} \\ (7.7) \end{gathered}$	$\begin{aligned} & 7.45, \mathrm{td} \\ & (7.6,1.2) \end{aligned}$	$\begin{aligned} & 7.35, \mathrm{td} \\ & (7.5,1.2) \end{aligned}$	$\begin{gathered} 7.96, \mathrm{~d} \\ (7.9) \end{gathered}$	$\left(\mathrm{NH}_{2}\right)$	6.81-6.73, m	$\begin{gathered} 7.22, \mathrm{td} \\ (6.4,1.9) \end{gathered}$	$\begin{aligned} & 6.81-6.73, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 7.70, \mathrm{~d} \\ & (7.8) \end{aligned}$	($2 \mathrm{H}, \mathrm{NH}_{2}$)	226
7	$\begin{aligned} & 3434,3311,3212, \\ & 1605,1482,762 \end{aligned}$	$\begin{aligned} & 7.89, \mathrm{~d} \\ & (8.5) \end{aligned}$	7.51-7.34, m		$\begin{aligned} & 8.05, \mathrm{~d} \\ & (7.7) \end{aligned}$	$\begin{aligned} & 7.51-7.34, \\ & \mathrm{~m} \end{aligned}$	$\left(\mathrm{NH}_{2}\right)$	$\begin{aligned} & 6.80, \mathrm{dd} \\ & (8.0,2.3) \end{aligned}$	$\begin{aligned} & 7.26, \mathrm{t} \\ & (7.7) \end{aligned}$	$\begin{aligned} & 7.51-7.34, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.84 \\ & \left(2 \mathrm{H}, \mathrm{NH}_{2}\right) \end{aligned}$	226
8	$\begin{aligned} & 3457,3296,3181 \text {, } \\ & 1604,1474,827 \end{aligned}$	$\begin{gathered} 7.88, \mathrm{~d} \\ (7.7) \end{gathered}$	$\begin{gathered} 7.45, \text { td } \\ (7.2,1.3) \end{gathered}$	$\begin{gathered} 7.33, \mathrm{td} \\ (7.3,1.2) \end{gathered}$	$\begin{gathered} 8.00, \mathrm{~d} \\ (7.1) \end{gathered}$	$\begin{aligned} & 7.75, \mathrm{~d} \\ & (8.6) \end{aligned}$	$\begin{aligned} & 6.66, \mathrm{~d} \\ & \hline \end{aligned}$	$\left(\mathrm{NH}_{2}\right)$	$\underset{(8.7)}{6.66, d}$	$\begin{aligned} & 7.75, \mathrm{~d} \\ & (8.6) \end{aligned}$	$\begin{aligned} & 3.67 \\ & \left(2 \mathrm{H}, \mathrm{NH}_{2}\right) \end{aligned}$	226
9	$\begin{aligned} & 3431,3329,3208, \\ & 1625,1432,755 \end{aligned}$	$\begin{aligned} & 7.90, \mathrm{~d} \\ & (7.7) \end{aligned}$	$\begin{gathered} 7.47, \mathrm{td} \\ (8.1,1.2) \end{gathered}$	$\begin{gathered} 7.34, \text { td } \\ (8.1,1.1) \end{gathered}$	$\begin{aligned} & 8.04, \mathrm{~d} \\ & (8.2) \end{aligned}$	(F)	$\begin{gathered} 6.47, \mathrm{dd} \\ (13.1,2.2) \end{gathered}$	$\left(\mathrm{NH}_{2}\right)$	$\begin{aligned} & 6.57, \mathrm{dd} \\ & (8.6,2.3) \end{aligned}$	$\begin{aligned} & 8.20, \mathrm{t} \\ & (9.0) \end{aligned}$	$\left(2 \mathrm{H}, \mathrm{NH}_{2}\right)$	244
10	$\begin{aligned} & 3455,3299,1602, \\ & 1432,1262,757 \end{aligned}$	$\begin{gathered} 7.90, \mathrm{~d} \\ (7.9) \end{gathered}$	$\begin{aligned} & 7.48, \mathrm{td} \\ & (7.2,1.3) \end{aligned}$	$\begin{array}{r} 7.37, \text { td } \\ (7.3,1.2) \end{array}$	$\begin{gathered} 8.06, \mathrm{~d} \\ (7.7) \end{gathered}$	(Cl)	$\begin{aligned} & 6.80, \mathrm{~d} \\ & (2.4) \end{aligned}$	$\left(\mathrm{NH}_{2}\right)$	$\begin{array}{r} 6.68, \mathrm{dd} \\ (8.6,2.4) \end{array}$	$\begin{aligned} & 8.11, \mathrm{~d} \\ & (8.6) \end{aligned}$	$\begin{aligned} & 4.03 \\ & \left(2 \mathrm{H}, \mathrm{NH}_{2}\right) \end{aligned}$	260
$11{ }^{\text {c }}$	$3472,3322,3186,$ 1614, 1454, 742	$\begin{aligned} & 7.69-7.64, \\ & \mathrm{~m} \end{aligned}$	7.36-7.28, m		$\begin{aligned} & 7.69-7.64, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 7.87, \mathrm{~d} \\ & (8.6) \end{aligned}$	$\begin{aligned} & 7.67, \mathrm{~d} \\ & (8.6) \end{aligned}$	$\left(\mathrm{NH}_{2}\right)$	$\begin{aligned} & 7.67, \mathrm{~d} \\ & (8.6) \end{aligned}$	$\begin{aligned} & 7.87, \mathrm{~d} \\ & (8.6) \end{aligned}$	$\begin{aligned} & 6.02 \\ & \left(2 \mathrm{H}, \mathrm{NH}_{2}\right) \end{aligned}$	210
13	$\begin{aligned} & 2122,1578,1299 \text {, } \\ & 1280,967,751 \end{aligned}$	$\begin{aligned} & 7.93, \mathrm{~d} \\ & (7.3) \end{aligned}$	$\begin{aligned} & 7.53-7.47, \\ & \mathrm{~m} \end{aligned}$	$\begin{gathered} 7.39, \mathrm{t} \\ (7.9) \end{gathered}$	$\begin{gathered} 8.09, \mathrm{~d} \\ (8.1) \end{gathered}$	$\left(\mathrm{N}_{3}\right)$	$\begin{aligned} & 7.33-7.30, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 7.53-7.47, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 7.33-7.30, \\ & \mathrm{~m} \end{aligned}$	$\begin{array}{r} 8.44, \mathrm{dd} \\ (7.8,1.7) \end{array}$		252
14	$\begin{aligned} & 2093,1606,1481, \\ & 1306,1281,726 \end{aligned}$	$\begin{aligned} & 7.90, \mathrm{~d} \\ & (8.0) \end{aligned}$	7.36-7 m		$\begin{gathered} 8.08, \mathrm{~d} \\ (8.0) \end{gathered}$	$\underset{(1.2)}{7.78, \mathrm{~d}}$	$\left(\mathrm{N}_{3}\right)$	$\begin{gathered} 7.12, \mathrm{dd} \\ (8.5,1.4) \end{gathered}$	$\begin{aligned} & 7.36-7.53, \\ & \mathrm{~m} \end{aligned}$	$\begin{array}{r} 7.80, \mathrm{dd} \\ (7.7,1.2) \end{array}$		252
15	$\begin{aligned} & 2121,1605,1478 \text {, } \\ & 1285,762 \end{aligned}$	$\begin{gathered} 7.83, \mathrm{~d} \\ (7.8) \end{gathered}$	$\begin{gathered} 7.43, \mathrm{td} \\ (8.1,1.3) \end{gathered}$	$\begin{gathered} 7.31, \mathrm{td} \\ (8.1,1.3) \end{gathered}$	$\begin{aligned} & 8.04-7.97 \\ & \mathrm{~m} \end{aligned}$	8.04-7.97, m	$\underset{(8.7)}{7.07, \mathrm{~d}}$	$\left(\mathrm{N}_{3}\right)$	$\begin{aligned} & 7.07, \mathrm{~d} \\ & (8.7) \end{aligned}$	$\begin{gathered} 8.04-7.97, \\ \mathrm{~m} \end{gathered}$		252
16	$\begin{aligned} & 3462,2116,1284, \\ & 816 \end{aligned}$	$\begin{aligned} & 7.61, \mathrm{~d} \\ & (0.7) \end{aligned}$	$\begin{gathered} 7.26, \mathrm{dd} \\ (8.4,1.5) \end{gathered}$	$\left(\mathrm{CH}_{3}\right)$	$\begin{gathered} 7.90, \mathrm{~d} \\ (8.3) \end{gathered}$	$\begin{gathered} 7.99, \mathrm{~d} \\ (8.7) \end{gathered}$	$\begin{gathered} 7.05, \mathrm{~d} \\ (8.7) \end{gathered}$	$\left(\mathrm{N}_{3}\right)$	$\begin{aligned} & 7.05, \mathrm{~d} \\ & (8.7) \end{aligned}$	$\begin{gathered} 7.99, \mathrm{~d} \\ (8.7) \end{gathered}$	$\begin{aligned} & 2.46, \mathrm{~s} \\ & \left(3 \mathrm{H}, \mathrm{CH}_{3}\right) \end{aligned}$	266
17	$\begin{aligned} & 3450,2107,1615, \\ & 1432,1288,760 \end{aligned}$	$\begin{gathered} 7.92, \mathrm{~d} \\ (7.7) \end{gathered}$	$\begin{aligned} & 7.51, \mathrm{td} \\ & (7.4,1.0) \end{aligned}$	$\begin{aligned} & 7.40, \mathrm{td} \\ & (7.3,1.1) \end{aligned}$	$\begin{aligned} & 8.09, \mathrm{~d} \\ & (8.1) \end{aligned}$	(F)	$\begin{aligned} & 6.87, \mathrm{dd} \\ & (11.7,2.1) \end{aligned}$	$\left(\mathrm{N}_{3}\right)$	$\begin{aligned} & 6.97, \text { dd } \\ & (8.6,2.1) \end{aligned}$	$\begin{aligned} & 8.42, \mathrm{t} \\ & (8.3) \end{aligned}$		270
18	$\begin{aligned} & 2101,1600,1301, \\ & 1263,736 \end{aligned}$	$\begin{gathered} 7.95, \mathrm{~d} \\ (7.3) \end{gathered}$	$\begin{aligned} & 7.54, \mathrm{td} \\ & (7.6,0.9) \end{aligned}$	$\begin{gathered} 7.43, \mathrm{td} \\ (8.1,1.0) \end{gathered}$	$\begin{aligned} & 8.12, \mathrm{~d} \\ & (8.2) \end{aligned}$	(C1)	$\begin{aligned} & 7.20, \mathrm{~d} \\ & (2.3) \end{aligned}$	$\left(\mathrm{N}_{3}\right)$	$\begin{gathered} 7.08, \mathrm{dd} \\ (8.6,2.3) \end{gathered}$	$\begin{aligned} & 8.30, \mathrm{~d} \\ & (8.5) \end{aligned}$		286
19	$\begin{aligned} & 3422,2120,1618, \\ & 1493,1283,744 \end{aligned}$	$\begin{gathered} 7.63-7.59, \\ \mathrm{~m} \end{gathered}$			$\begin{aligned} & 7.81-7.71, \\ & \mathrm{~m} \end{aligned}$	$\begin{gathered} 8.28, \mathrm{~d} \\ (8.8) \end{gathered}$	$\begin{aligned} & 7.20, \mathrm{~d} \\ & (8.8) \end{aligned}$	$\left(\mathrm{N}_{3}\right)$	$\begin{aligned} & 7.20, \mathrm{~d} \\ & (8.8) \end{aligned}$	$\begin{aligned} & 8.28, \mathrm{~d} \\ & (8.8) \end{aligned}$		236

[^0]Table $2 \quad{ }^{1} \mathrm{H}$ NMR spectral data (δ values) of azide decomposition products $20-39$

Compound	4-H	5-H	6-H	7-H	$2^{\prime}-\mathrm{H}$	$3^{\prime}-\mathrm{H}$	$4^{\prime}-\mathrm{H}$	$5^{\prime}-\mathrm{H}$	6^{\prime}-H	Others ${ }^{\text {a }}$
20	$\begin{aligned} & 7.89, \mathrm{~d} \\ & (7.3) \end{aligned}$	$\begin{gathered} 7.48, \mathrm{td} \\ (7.8,1.5) \end{gathered}$	$\begin{gathered} 7.39, \mathrm{td} \\ (7.2,1.1) \end{gathered}$	$\begin{aligned} & 7.98, \mathrm{~d} \\ & (8.0) \end{aligned}$	$\left(\mathrm{NH}_{2}\right)$	$\begin{gathered} 6.78, \mathrm{~d} \\ (9.0) \end{gathered}$	$\begin{array}{r} 7.11, \mathrm{dd} \\ (9.0,2.8) \end{array}$	$\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$	$\begin{aligned} & 7.56, \mathrm{~d} \\ & (2.8) \end{aligned}$	$6.60\left(2 \mathrm{H}, \mathrm{NH}_{2}\right)$
21	$\begin{aligned} & 7.98, \mathrm{~d} \\ & (7.7) \end{aligned}$	$\begin{gathered} 7.60, \mathrm{t} \\ (7.3) \end{gathered}$	$\begin{aligned} & 7.53, \mathrm{t} \\ & (7.5) \end{aligned}$	$\begin{aligned} & 8.05, \mathrm{~d} \\ & (7.7) \end{aligned}$	$\left(\mathrm{NHCOCF}_{3}\right)$	$\begin{aligned} & 8.92, \mathrm{~d} \\ & (9.3) \end{aligned}$	$\begin{aligned} & 7.45, \text { dd } \\ & (9.3,2.8) \end{aligned}$	$\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$	$\begin{gathered} 7.80, \mathrm{~d} \\ (2.7) \end{gathered}$	14.10 (1 H, NH)
22	$\begin{gathered} 7.87, \mathrm{~d} \\ (7.8) \end{gathered}$	$\begin{aligned} & 7.45, \mathrm{t} \\ & (7.1) \end{aligned}$	$\begin{aligned} & 7.35, \mathrm{t} \\ & (8.1) \end{aligned}$	$\begin{aligned} & 7.97, \mathrm{~d} \\ & (8.0) \end{aligned}$	$\left(\mathrm{NH}_{2}\right)$	$\begin{array}{r} 6.71 \\ (8.7) \end{array}$	$\begin{array}{r} 6.81, \mathrm{dd} \\ (8.7,2.6) \end{array}$	(OH)	$\begin{aligned} & 7.20, \mathrm{~d} \\ & (2.6) \end{aligned}$	$\begin{aligned} & 8.84(1 \mathrm{H}, \mathrm{OH})^{b} \\ & 6.67\left(2 \mathrm{H}, \mathrm{NH}_{2}\right)^{b} \end{aligned}$
23	$\begin{gathered} 7.97, \mathrm{~d} \\ (7.6) \end{gathered}$	$\begin{gathered} 7.15, \mathrm{td} \\ (8.2,1.3) \end{gathered}$	$\begin{gathered} 7.47, \mathrm{td} \\ (8.0,1.3) \end{gathered}$	$\begin{aligned} & 8.17, \mathrm{~d} \\ & (8.0) \end{aligned}$	$\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$	$\begin{aligned} & 7.26, \mathrm{~d} \\ & (8.9) \end{aligned}$	$\begin{aligned} & 6.79, \mathrm{dd} \\ & (8.9,2.9) \end{aligned}$	$\left(\mathrm{NH}_{2}\right)$	$\begin{gathered} 7.38, \mathrm{~d} \\ (2.9) \end{gathered}$	4.20 ($2 \mathrm{H}, \mathrm{NH}_{2}$)
$24^{\text {b }}$	$\begin{gathered} 8.07, \mathrm{~d} \\ (7.9) \end{gathered}$	$\underset{(7.5)}{7.57, \mathrm{t}}$	$\begin{aligned} & 7.48, \mathrm{t} \\ & (7.5) \end{aligned}$	$\begin{gathered} 8.18, \mathrm{~d} \\ (7.8) \end{gathered}$	(OH)	$\begin{gathered} 7.19, \mathrm{~d} \\ (8.9) \end{gathered}$	$\begin{aligned} & 7.38, \mathrm{dd} \\ & (8.9,2.6) \end{aligned}$	$\left(\mathrm{NHSO}_{2} \mathrm{CF}_{3}\right)$	$\underset{(2.6)}{8.32, \mathrm{~d}}$	$\begin{aligned} & 11.76(1 \mathrm{H}, \mathrm{OH}) \\ & 9.70(1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
$25^{\text {b }}$	$\begin{aligned} & 8.02, \mathrm{~d} \\ & (8.0) \end{aligned}$	$\begin{gathered} 7.53, \mathrm{t} \\ (7.4) \end{gathered}$	$\begin{gathered} 7.43, \mathrm{t} \\ (7.1) \end{gathered}$	$\begin{gathered} 8.12, \mathrm{~d} \\ (7.8) \end{gathered}$	(OH)	$\begin{aligned} & 6.82, \mathrm{~d} \\ & (8.7) \end{aligned}$	$\begin{aligned} & 6.72, \mathrm{dd} \\ & (8.7,2.5) \end{aligned}$	$\left(\mathrm{NH}_{2}\right)$	$\begin{gathered} 7.38, \mathrm{~d} \\ (2.6) \end{gathered}$	$\begin{aligned} & 10.69(1 \mathrm{H}, \mathrm{OH}) \\ & 4.9\left(2 \mathrm{H}, \mathrm{NH}_{2}\right) \end{aligned}$
26	$7.88-7.81 \text {, }$	$\begin{aligned} & 7.48, \mathrm{t} \\ & (7.7) \end{aligned}$	$\begin{gathered} 7.36, \mathrm{t} \\ (7.6) \end{gathered}$	$\begin{gathered} 8.02, \mathrm{~d} \\ (8.1) \end{gathered}$	$\begin{gathered} 7.96, \mathrm{~d} \\ (1.8) \end{gathered}$	$\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$	$\left(\mathrm{NH}_{2}\right)$	$\underset{(8.5)}{6.90, \mathrm{~d}}$	$7.88-7.81$	$4.12\left(2 \mathrm{H}, \mathrm{NH}_{2}\right)$
27	7.66, s	7.31-7.26,	$\left(\mathrm{CH}_{3}\right)$	$\begin{gathered} 7.90, \mathrm{~d} \\ (8.3) \end{gathered}$	$\begin{gathered} 7.94, \mathrm{~d} \\ (1.9) \end{gathered}$	$\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$	$\left(\mathrm{NH}_{2}\right)$	$\begin{aligned} & 6.91, \mathrm{~d} \\ & (8.5) \end{aligned}$	$\begin{array}{r} 7.84, \mathrm{dd} \\ (8.4,1.9) \end{array}$	$\begin{aligned} & 4.27\left(2 \mathrm{H}, \mathrm{NH}_{2}\right) \\ & 2.49, \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) \end{aligned}$
28	$\begin{gathered} 7.91, \mathrm{~d} \\ (7.4) \end{gathered}$	$\begin{gathered} 7.51, \mathrm{td} \\ (7.5,1.0) \end{gathered}$	$\begin{gathered} 7.39, \text { td } \\ (7.5,1.0) \end{gathered}$	$\begin{aligned} & 8.08, \mathrm{~d} \\ & (8.2) \end{aligned}$	(F)	$\underset{(11.9)}{6.67, \mathrm{~d}}$	$\left(\mathrm{NH}_{2}\right)$	$\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$	$\begin{gathered} 8.31, \mathrm{~d} \\ (6.7) \end{gathered}$	$4.39\left(2 \mathrm{H}, \mathrm{NH}_{2}\right)$
29	$\begin{gathered} 7.93, \mathrm{~d} \\ (7.5) \end{gathered}$	$\begin{aligned} & 7.52, \mathrm{t} \\ & (8.0) \end{aligned}$	$\begin{aligned} & 7.41, \mathrm{t} \\ & (8.0) \end{aligned}$	$\begin{gathered} 8.09, \mathrm{~d} \\ (8.3) \end{gathered}$	(Cl)	6.99 , s	$\left(\mathrm{NH}_{2}\right)$	$\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$	8.26, s	$4.32\left(2 \mathrm{H}, \mathrm{NH}_{2}\right)$
30	$\begin{aligned} & 7.92, \mathrm{~d} \\ & (8.0) \end{aligned}$	$\begin{aligned} & 7.48, \mathrm{td} \\ & (7.5,1.4) \end{aligned}$	$\begin{array}{r} 7.42, \mathrm{td} \\ (7.4,1.3) \end{array}$	$\begin{aligned} & 8.06, \mathrm{~d} \\ & (7.6) \end{aligned}$	(Cl)	$\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$	$\left(\mathrm{NH}_{2}\right)$	$\begin{gathered} 6.86, \mathrm{~d} \\ (8.8) \end{gathered}$	$\begin{gathered} 8.12, \mathrm{~d} \\ (8.8) \end{gathered}$	4.43 ($2 \mathrm{H}, \mathrm{NH}_{2}$)
$31^{\text {b }}$	$\begin{aligned} & 8.06, \mathrm{~d} \\ & (8.0) \end{aligned}$		m m	$\begin{aligned} & 8.15, \mathrm{~d} \\ & (7.9) \end{aligned}$	$\underset{(1.7)}{7.70, \mathrm{~d}}$	(OH)	$\left(\mathrm{NHSO}_{2} \mathrm{CF}_{3}\right)$	$\begin{aligned} & 7.37, \mathrm{~d} \\ & (8.3) \end{aligned}$	$7.58-7.42,$	$10.5(1 \mathrm{H}, \mathrm{OH})$
$32^{\text {b }}$	$\begin{aligned} & 7.65, \mathrm{~d} \\ & (1.4) \end{aligned}$	$\begin{aligned} & 7.39-7.35, \\ & \mathrm{~m} \end{aligned}$	$\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 7.95-7.92, \text {, } \\ & \mathrm{m} \end{aligned}$	$\begin{aligned} & 7.95-7.92, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & (\mathrm{OH}) \\ & 7.29, \mathrm{~d} \end{aligned}$	$\left(\mathrm{NHSO}_{2} \mathrm{CF}_{3}\right)$	$\begin{gathered} 7.50, \mathrm{dd} \\ (8.2,2.0) \end{gathered}$	$\begin{aligned} & 7.39-7.35, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 8.35(1 \mathrm{H}, \mathrm{NH}) \\ & 2.47, \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) \end{aligned}$
33	$\begin{aligned} & 8.07, \mathrm{~d} \\ & (8.0) \end{aligned}$	$\begin{aligned} & 7.56, \mathrm{t} \\ & (7.5) \end{aligned}$	$\begin{gathered} 7.45, \mathrm{t} \\ (7.5) \end{gathered}$	$\begin{aligned} & 8.15, \mathrm{~d} \\ & (8.0) \end{aligned}$	(F)	$\begin{aligned} & (13.1) \\ & \left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right) \end{aligned}$	$\left(\mathrm{NHSO}_{2} \mathrm{CF}_{3}\right)$	(OH)	$\begin{gathered} 7.72, \mathrm{~d} \\ (7.1) \end{gathered}$	
34	$\begin{aligned} & 7.92, \mathrm{~d} \\ & (7.7) \end{aligned}$	$\begin{gathered} 7.54, \mathrm{td} \\ (7.2,1.2) \end{gathered}$	$\begin{gathered} 7.44, \text { td } \\ (8.0,1.3) \end{gathered}$	8.11-8.07, m	$\begin{gathered} 8.21, \mathrm{~d} \\ (1.9) \end{gathered}$	$\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$	$\left(\mathrm{NHCOCF}_{3}\right)$	$\begin{aligned} & 8.41, \mathrm{~d} \\ & (8.7) \end{aligned}$	8.11-8.07,	8.29 (1 H, NH)
35	7.71, s	$\begin{array}{r} 7.35, \mathrm{dd} \\ (8.4,1.4) \end{array}$	$\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 7.96, \mathrm{~d} \\ & (8.3) \end{aligned}$	$\begin{aligned} & 8.19, \mathrm{~d} \\ & (1.9) \end{aligned}$	8.37 , d	$\left(\mathrm{NHCOCF}_{3}\right)$	$\begin{aligned} & 8.39, \mathrm{~d} \\ & (8.6) \end{aligned}$	$\begin{gathered} 8.06, \mathrm{dd} \\ (8.6,2.0) \end{gathered}$	$\begin{aligned} & 8.26(1 \mathrm{H}, \mathrm{NH}) \\ & 2.51, \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) \end{aligned}$
36	$\begin{gathered} 7.98, \mathrm{~d} \\ (7.6) \end{gathered}$	$\begin{aligned} & 7.57, \text { td } \\ & (7.8,1.2) \end{aligned}$	$\begin{gathered} 7.47, \text { td } \\ (7.5,1.2) \end{gathered}$	$\begin{aligned} & 8.14, \mathrm{~d} \\ & (8.1) \end{aligned}$	(F)	(11.8)	$\left(\mathrm{NHCOCF}_{3}\right)$	$\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$	$\underset{(6.5)}{8.57, \mathrm{~d}}$	8.34 (1 H, NH)
$37^{\text {b }}$	$\begin{aligned} & 7.90, \mathrm{~d} \\ & (7.9) \end{aligned}$		2, m	$\begin{aligned} & 8.02, \mathrm{~d} \\ & (7.9) \end{aligned}$	$\begin{aligned} & \text { 7.49-7.32, } \\ & \mathrm{m} \end{aligned}$	(OH)	$\left(\mathrm{NH}_{2}\right)$	$\begin{gathered} 6.69, \mathrm{~d} \\ (8.1) \end{gathered}$	$\begin{aligned} & 7.49-7.32, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 9.58(1 \mathrm{H}, \mathrm{OH}) \\ & 5.35\left(2 \mathrm{H}, \mathrm{NH}_{2}\right) \end{aligned}$
38	7.40, s	$\begin{aligned} & 7.25-7.30, \\ & \mathrm{~m} \end{aligned}$	$\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 7.77, \mathrm{~d} \\ & (8.3) \end{aligned}$	7.81, s	(OH)	$\left(\mathrm{NH}_{2}\right)$	$\begin{gathered} 6.66, \mathrm{~d} \\ (8.0) \end{gathered}$	$\begin{aligned} & 7.25-7.30, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 9.53(1 \mathrm{H}, \mathrm{OH}) \\ & 5.30\left(2 \mathrm{H}, \mathrm{NH}_{2}\right) \end{aligned}$
$39^{\text {b }}$	$\underset{(8.1)}{7.94, \mathrm{~d}}$	$\begin{aligned} & 7.49, \mathrm{t} \\ & (7.5) \end{aligned}$	$\underset{(7.5)}{7.37, \mathrm{t}}$	$\begin{aligned} & 8.06, \mathrm{~d} \\ & (8.3) \end{aligned}$	(F)	$\underset{(13.6)}{6.50, \mathrm{~d}}$	$\left(\mathrm{NH}_{2}\right)$	(OH)	$\begin{gathered} 7.62, \mathrm{~d} \\ (7.2) \end{gathered}$	$\begin{aligned} & 9.58(1 \mathrm{H}, \mathrm{OH}) \\ & 5.70\left(2 \mathrm{H}, \mathrm{NH}_{2}\right) \end{aligned}$

${ }^{a}$ All OH, NH and NH_{2} signals appeared as broad singlets exchangeable with $\mathrm{D}_{2} \mathrm{O} .{ }^{b}$ Solvent: $\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO; solvent for other compounds: CDCl_{3}.

$49 X=S, R=H$
$50 X=S, R=M e$
$51 X=O, R=H$
were oxidised to 2,9 -disubstituted benzo $[c]$ cinnolines 49-51, respectively, by (diacetoxyiodo)benzene (DAIB) in dry toluene in $60-70 \%$ yields which convincingly corroborates the proposed structures of the starting biphenyls. In addition, all the colourless 2-(4-aminophenyl)benzothiazoles and benzothiazolyl-substituted biphenyls with a free 4 -amino group gave deep yellow solutions in $2 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid; these bathochromic shifts may be accounted for by the extended conjugation of quinonoid mesomers of general structure 52 . No

52
such shifts were seen in 2-phenylbenzothiazoles bearing amino groups in ortho or meta positions in the 2-phenyl residue.

Mechanism of formation of triflate-substituted 2-(aminophenyl)benzothiazoles
The generation of the π-carbocations 53-58 from the precursor azides 13-18 in triflic mixture, followed by their interception
with triflate anion, accounts for the formation of simple triflatesubstituted arylamines (Scheme 2). Despite careful chromatographic fractionation of the reaction mixtures from the decomposition of azides 13 and 14 , only triflates 20 and 23 , derived from nucleophile intrusion para to the incipient amine, were detected although the reason for this preference is not clear. The efficiency of conversion of 2-(3-azidophenyl)benzothiazole 14 into amine 23 is notable in that the triflate group is juxtaposed to the bulky benzothiazolyl moiety. When the para position is blocked, as in the azides 15-18, the π-carbocations $55-58$ must perforce be intercepted by triflate ortho to the incipient amine, but this is an unfavourable outcome as biphenyls now become substantial products. In the case of 2-(4-azido-2-chlorophenyl)benzothiazole 18, products 29 and 30, from introduction of triflate at both ortho positions of the π carbocation 58, were formed in a $2: 3$ ratio. Disappointingly, no participation of the hetero-atoms of the thiazole nucleus, potentially leading to ring-expansion reactions, was involved in product formation.
As an alternative tactic to generate the carbocation 53 and products derived therefrom, the indazolo $[3,2-b]$ benzothiazole 59, formed by thermolysis of azide $13,{ }^{8}$ was treated with TFSA at $25^{\circ} \mathrm{C}$ but no ring-opening (Scheme 3) of the indazolobenzothiazolium cation 60 was effected and only unchanged 59 was recovered on basification of the reaction mixture. Also, an attempt to extend π-carbocation capture to alternative nucleophiles was unsuccessful. Thus, when 2-(3-azidophenyl)benzothiazole 14 was decomposed in triflic mixture containing tetraethylammonium halides (halide $=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$), sodium halides (halide $=\mathrm{Cl}, \mathrm{Br}$) or a representative carbon nucleophile (diethyl malonate) no incorporation of halide or malonate was observed and only the triflate 23 was isolated in $65-75 \%$ yields. In addition, no decomposition of this azide occurred in acetic, trifluoroacetic or 100% phosphoric acid at $25^{\circ} \mathrm{C}$.

Mechanism of formation of $\mathbf{2 , 2} \mathbf{2}^{\prime}$-diaminobiphenyls

Our original (tentative) proposal to explain the formation of these products from 2-(4-azidophenyl)benzothiazoles ${ }^{7}$ involved an $\mathrm{N}-\mathrm{N}$ intermolecular coupling to generate hydrazo intermediates, followed by an ortho-benzidine rearrangement.

Scheme 2

59
60
Scheme 3

This mechanism is no longer tenable in the light of further experimentation. Thus, 4,4'-bis(benzothiazol-2-yl)azobenzene 62 was synthesised either by direct oxidation of amine 8 with DAIB in dry toluene at $25^{\circ} \mathrm{C}$ or by condensation of the acid chloride 61 with 2 -aminobenzenethiol in boiling pyridine. Reduction of the azobenzene with tin (II) chloride-hydrochloric acid gave the hydrazobenzene 63 (note: not the benzidine rearrangement product 40). Also, the (presumed) diprotonated species 64 did not rearrange to the expected diaminobiphenyl 40 in hot triflic mixture or mineral acids: instead, disproportionation occurred and the products were the amine 8 and the azobenzene 62 (Scheme 4). A similar disproportionation has been reported in $4,4^{\prime}$-diiodohydrazobenzene $63(B=I) .{ }^{9}$

Scheme 4
Both aryl azides ${ }^{10}$ and hydroxylamines ${ }^{11}$ yield biphenyls when decomposed in TFSA in the presence of neutral aromatic substrates (e.g. benzene, anisole, nitrobenzene). Similarly, the reductive phenylation of nitroarenes can be accomplished using zinc dust-TFSA in benzene. ${ }^{12} \mathrm{C}-\mathrm{C}$ couplings between carbocations 55 and 56, generated from azides 15 and 16, respectively, and amines 8 and 12 cannot be involved in the pathway to $2,2^{\prime}$-diaminobiphenyls $\mathbf{4 0}$ and $\mathbf{4 2}$ since these amines would be protonated in the triflic mixture and poor substrates for electrophilic substitution. Moreover, simple arylamines have been recorded as only very minor by-products in TFSAinduced aryl azide decompositions ${ }^{13,14}$ (cf. photo- and thermal degradations). ${ }^{4}$ Consistent with these reports decomposition of 2-(4-azidophenyl)benzothiazole 15 in TFSA alone at $0^{\circ} \mathrm{C}$ in the present work gave $<5 \%$ of the amine $\mathbf{8}$, insufficient to account for the observed yields of biphenyls. This conclusion was confirmed when azide 15 was decomposed in triflic mixture in the presence of a molar equivalent of the amine 12, or

65

Scheme 5
alternatively, azide 16 was decomposed in the presence of amine 8; the 'crossed' biphenyl 65 was not formed in either case.

A mechanism which accounts for the formation of biphenyls from azides 15 and 16 is summarised in Scheme 5. Coupling between π-carbocations 55 and 56, generated from the azide substrates and undecomposed azides, could afford transient 2-amino- 2^{\prime}-azidobiphenyls 66 and 67, respectively, which are subsequently processed by two routes. One pathway leads to the symmetrical biphenyls 40 and 42 , possibly via protonated O trifluoromethylsulfonylhydroxylamines 68 and 69 formed by interception of nitrenium mesomers with TFSA which are subsequently hydrolysed to amines during work-up; the second pathway leads to the triflate-substituted $2,2^{\prime}$-diaminobiphenyls 41 and 43 after intermediate generation of further π-carbocation reactive species 70 and 71 as previously described in Scheme 2.

The crystal structure of 5,6-dimethoxy-2-(4-methoxyphenyl)benzothiazole shows that the bulky sulfur atom imposes a twist angle of 21° about the pivotal $\mathrm{C}-\mathrm{C}$ bond. ${ }^{15}$ The absence of biphenyl products from the decomposition of 2-(4-azido-2chlorophenyl)benzothiazole 18 may be due to a steric effect of the bulky chloro (relative to fluoro) group which increases the twist angle between the benzothiazole moiety and the reactive π-carbocation centre and inhibits bimolecular interaction, except by the relatively compact triflate anion. The significantly higher yield of biphenyl 46, obtained from 2-(4-azidophenyl)benzoxazole 19 is consistent with this hypothesis since the smaller oxygen atom would allow for the achievement of greater coplanarity in the transition state leading to biphenyl products.

Experimental

All mps were determined on a Gallenkamp melting point apparatus and are uncorrected. IR spectra were measured in KBr on a Mattson 2020 GALAXY Series FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AC250 or ARX250 spectrometers Mass spectra and accurate mass measurements were recorded on an AEI MS-902 or a VGMicromass 7070E spectrometer.
2-(4-Aminophenyl)-6-methylbenzothiazole 12 was purchased from Aldrich Chemical Co. Ltd.

Synthesis of 2-(nitrophenyl)benzothiazoles 1-5

To a solution of the appropriate nitrobenzoyl chloride (0.03 mol) in pyridine ($20 \mathrm{~cm}^{3}$) was added dropwise 2-aminobenzenethiol (0.03 mol). Usually the reaction was exothermic but for the synthesis of the 2-(4-nitrophenyl)benzothiazoles 3-5 reaction mixtures were heated under reflux for 1 h . The resulting mixtures were cooled to $25^{\circ} \mathrm{C}$ and poured into water $\left(200 \mathrm{~cm}^{3}\right)$. Precipitates were filtered off, washed with water and recrystallised from methanol or ethanol. Yields and physical characteristics of products were as follows: $1,82 \%, \mathrm{mp} 124$ $126^{\circ} \mathrm{C}$ (lit., ${ }^{16} \mathrm{mp} 122-123^{\circ} \mathrm{C}$); 2, 80%, mp $182-184^{\circ} \mathrm{C}$ (lit., ${ }^{17}$ $\mathrm{mp} 186.8-187.3^{\circ} \mathrm{C}$); 3, $74 \%, \mathrm{mp} 229-231^{\circ} \mathrm{C}$ (lit., ${ }^{17} \mathrm{mp}$ $233^{\circ} \mathrm{C}$); 2-(2-fluoro-4-nitrophenyl)benzothiazole 4, $76 \%, \mathrm{mp}$ ${ }^{195-197}{ }^{\circ} \mathrm{C}$ (Found: C, 56.7; H, 2.35; N, 10.4. $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 56.9 ; \mathrm{H}, 2.55 ; \mathrm{N}, 10.2 \%$); 2-(2-chloro-4-nitrophenyl)benzothiazole 5, $74 \%, \mathrm{mp} 180-182^{\circ} \mathrm{C}$ (Found: C, 53.7; $\mathrm{H}, 2.3 ; \mathrm{N}, 9.4 . \mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C , 53.7 ; $\mathrm{H}, 2.4$; N, 9.6\%).

Synthesis of 2-(aminophenyl)benzazoles 6-11

(1) A mixture of the appropriate 2-(nitrophenyl)benzothiazole 1-5 (0.015 mol) and tin(II) chloride dihydrate (0.075 mol) in absolute ethanol ($50 \mathrm{~cm}^{3}$) was stirred and refluxed under nitrogen for 4 h . After evaporation of ethanol, ethyl acetate ($100 \mathrm{~cm}^{3}$) was added to the residue and the organic layer was washed with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide (3×100 cm^{3}), water ($2 \times 100 \mathrm{~cm}^{3}$) and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure. The crude product was recrystallised from ethanol to afford the appropriate amine. Yields and physical characteristics of products were as follows: 6, 85%, mp $140-142^{\circ} \mathrm{C}$ (lit., ${ }^{18} \mathrm{mp} 126.7-127.7^{\circ} \mathrm{C}$); $7,95 \%$, mp $143-144^{\circ} \mathrm{C}$ (lit.,$^{19} \mathrm{mp} 145^{\circ} \mathrm{C}$); 8, 90%, mp $155-157{ }^{\circ} \mathrm{C}$ (lit., ${ }^{20} \mathrm{mp} 155-157^{\circ} \mathrm{C}$); 2-(4-amino-2-fluorophenyl)benzothiazole 9, 85%, mp $164-165^{\circ} \mathrm{C}$ (Found: C, 63.7 ; H, 3.6; N, 11.3. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{~S}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 3.7 ; \mathrm{N}, 11.5 \%$); 2-(4-amino-2-chlorophenyl)benzothiazole $10,93 \%$, mp $100-101^{\circ} \mathrm{C}$ (Found: C, 59.7; H, 3.4; N, 10.6. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{~S}$ requires C, $59.9 ; \mathrm{H}, 3.48 ; \mathrm{N}, 10.7 \%$); 11, 85%, mp $176-178^{\circ} \mathrm{C}$ (lit., ${ }^{21} \mathrm{mp}$ $180^{\circ} \mathrm{C}$).
(2) The amines $6-8$ were also prepared from 2-aminobenzenethiol and 2-, 3- and 4-aminobenzoic acids, respectively, in
polyphosphoric acid at $210^{\circ} \mathrm{C}$ for 4 h , and the amine $\mathbf{1 1}$ similarly from 2-aminophenol and 4 -aminobenzoic acid. Yields of these reactions ranged $57-65 \%$.

Synthesis of 2-(azidophenyl)benzazoles 13-19

A fine suspension of the precursor 2-(aminophenyl)benzazole $(0.01 \mathrm{~mol})$ in $5 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid ($100 \mathrm{~cm}^{3}$) was diazotised at $0-5{ }^{\circ} \mathrm{C}$ with sodium nitrite $(0.012 \mathrm{~mol})$ in water (2 cm^{3}). The reaction mixture was left to stir for 20 min , then sodium azide (0.04 mol) in water ($5 \mathrm{~cm}^{3}$) was added to it dropwise and the mixture was stirred for a further 2 h at $0-$ $5^{\circ} \mathrm{C}$. After basification with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide to pH 7 , the precipitate was filtered off, washed with water and dried. Purification by flash chromatography on silica gel using EtOAc-hexane ($1: 3$) as the eluent gave the title compounds. Yields and physical characteristics of products were as follows: $13,92 \%, \mathrm{mp} 118-120^{\circ} \mathrm{C}$ decomp. (lit., ${ }^{16} \mathrm{mp}$ $133-134^{\circ} \mathrm{C}$ decomp.); 2-(3-azidophenyl)benzothiazole 14, 96%, $\mathrm{mp} 72-74{ }^{\circ} \mathrm{C}$ decomp. (Found: C, 61.7; H, 3.4; N, 22.6. $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}$ requires $\mathrm{C}, 61.9 ; \mathrm{H}, 3.2 ; \mathrm{N}, 22.2 \%$); 2-(4azidophenyl)benzothiazole $15,90 \%, \mathrm{mp} 158-160^{\circ} \mathrm{C}$ decomp. (Found: C, 61.6; H, 3.4; N, 22.4. $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}$ requires C, 61.9; H, 3.2; N, 22.2\%); 2-(4-azidophenyl)-6-methylbenzothiazole 16, 72%, mp 132-134 ${ }^{\circ} \mathrm{C}$ decomp. (lit., ${ }^{22} \mathrm{mp} 133.5^{\circ} \mathrm{C}$); 2-(4-azido-2-fluorophenyl)benzothiazole $17,84 \%, \mathrm{mp} 121-123^{\circ} \mathrm{C}$ decomp. (Found: C, 57.7; H, 2.6; N, 20.3. $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{FN}_{4} \mathrm{~S}$ requires C, 57.8; H, 2.6; N, 20.7\%); 2-(4-azido-2-chlorophenyl)benzothiazole 18, $69 \%, \operatorname{mp} 119-122^{\circ} \mathrm{C}$ (Found: C, 54.7 ; H, 2.6; N, 19.3. $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClN}_{4} \mathrm{~S}$ requires $\left.\mathrm{C}, 54.45 ; \mathrm{H}, 2.4 ; \mathrm{N}, 19.5 \%\right)$; 2-(4azidophenyl)benzoxazole 19, 72%, mp $132-133^{\circ} \mathrm{C}$ decomp. (Found: C, 65.9; H, 3.6; N, 23.3. $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$ requires C, 66.1; H, 3.4; N, 23.7%).
The spectroscopic data of all nitro-, amino- and azidophenylbenzothi(or ox)azoles 1-19 are summarised in Table 1.

General procedure for the decomposition of 2-(azidophenyl)benzazoles 13-19

The azide (1 g) was added in small portions to a mixture of TFSA ($4 \mathrm{~cm}^{3}$), TFA $\left(5 \mathrm{~cm}^{3}\right)$ and TFAA $\left(1 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 30 min , then at room temperature for 18 h, the reaction mixture was basified with ice-aqueous ammonia and extracted with ethyl acetate. The combined organic layers were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. This gave a dark residue which was separated on silica gel (see below). The ${ }^{1} \mathrm{H}$ NMR data of the pure products are listed in Table 2.

Decomposition of 2-(2-azidophenyl)benzothiazole 13. Chromatographic fractionation of the products using EtOAchexane ($1: 4$) as the eluent afforded 2-(2-amino-5-trifluoromethylsulfonyloxyphenyl)benzothiazole 20 (67%), $\mathrm{mp} 98-$ $100^{\circ} \mathrm{C}$ (EtOH) (Found: C, 44.7; H, 2.2; N, 7.7\%; M ${ }^{+}, 374$. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, 44.9; H, 2.4; N, 7.5\%; M, 374); $v_{\text {max }} / \mathrm{cm}^{-1} 3483,1618,1500,1407,1223,1204,1138,903$, 870, 756 and 652; 2-(2-trifluoroacetamido-5-trifluoromethylsulfonyloxyphenyl)benzothiazole 21 (5%), mp $153-155^{\circ} \mathrm{C}$ (MeOH) (Found: $\mathrm{M}^{+}, 470 . \mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $M, 470$); $v / \mathrm{cm}^{-1} 3430,1718,1558,1420,1206,1189,1164,1142,995,922$, 868 and 755; and 2-(2-amino-5-hydroxyphenyl)benzothiazole 22 (13%), mp 210-212 ${ }^{\circ} \mathrm{C}$ (Found: C, $64.3 ; \mathrm{H}, 4.0 ; \mathrm{N}, 11.3 \%$; M^{+}, 242. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 64.4 ; \mathrm{H}, 4.2 ; \mathrm{N}, 11.6 \% ; M, 242$), $v / \mathrm{cm}^{-1} 3328,1498,1446,1237,1196,1157,994,909,845$ and 753.

Trifluoroacetylation of $20(0.31 \mathrm{~g})$ with TFAA at room temperature gave $21(0.37 \mathrm{~g}, 95 \%)$, hydrolysis of which with a 10% solution of potassium hydroxide in methanol and water gave 22 (83%).

Decomposition of 2-(3-azidopheny)benzothiazole 14. A dichloromethane extract of the decomposition products was concentrated and furnished a precipitate of 2-(2-hydroxy-5trifluoromethylsulfonamidophenyl)benzothiazole 24 (7%), mp $178-179^{\circ} \mathrm{C}$ (Found: C, 44.7; H, 2.3; N, 7.7\%; M ${ }^{+}, 374$. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, 44.9; H, 2.4; $\mathrm{N}, 7.5 \% ; M, 374$); $v_{\max } / \mathrm{cm}^{-1} 1658,1500,1177,1150,1074,992,762$ and 610. The soluble fraction was chromatographed using EtOAchexane (3:7) as the eluent to give 2-(5-amino-2trifluoromethylsulfonyloxyphenyl)benzothiazole 23 (70%), mp $87-89^{\circ} \mathrm{C}$ (Found: C, 45.2; H, 2.8; N, 7.8\%; $\mathbf{M}^{+}, 374$. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, 44.9; H, 2.4; N, 7.5\%; M, 374); $v_{\max } / \mathrm{cm}^{-1} 3464,3330,1637,1502,1404,1209,1164,1134,860$, 763 and 641; and 2-(5-amino-2-hydroxyphenyl)benzothiazole 25 (5%), mp 172-175 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 242 . \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$ requires $M, 242) ; v / \mathrm{cm}^{-1} 3414,1597,1498,1439,1253,1194,994$ and 755.

Decomposition of 2-(4-azidophenyl)benzothiazole 15. Chromatography [EtOAc-hexane ($2: 3$)] of the reaction mixture afforded 2-(4-amino-3-trifluoromethylsulfonyloxyphenyl)benzothiazole $26(12 \%), \mathrm{mp} \mathrm{192-195}{ }^{\circ} \mathrm{C}$ (Found: C, 44.75 ; H, 2.65; $\mathrm{N}, 7.9 \% ; \mathrm{M}^{+}, 374 . \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, 44.9; H, $2.4 ; \mathrm{N}, 7.5 \% ; M, 374) ; v / \mathrm{cm}^{-1} 3465,3376,1637,1481,1408$, 1206, 1139, 905, 818 and 758; 2,2'-diamino-5,5'-bis(benzo-thiazol-2-yl)biphenyl hydrate $40(29 \%)$, mp $305-307^{\circ} \mathrm{C}$ (Found: C, 67.0; H, 4.0; N, 11.8; S, 13.8\%; M ${ }^{+}$, 450.0970. $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 66.6 ; \mathrm{H}, 4.3 ; \mathrm{N}, 12.0$; S, $13.7 \% ; M-\mathrm{H}_{2} \mathrm{O}, 450.0973$); $v / \mathrm{cm}^{-1} 3468,3362,1619$, $1468,1434,1306,1226,756$ and $726 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO) 8.03 (d, $2 \mathrm{H}, J 7.8$, benzothiazolyl $7-\mathrm{H}, 7^{\prime}-\mathrm{H}$), 7.92 (d, $2 \mathrm{H}, J 7.8$, benzothiazolyl $4-\mathrm{H}, 4^{\prime}-\mathrm{H}$), 7.86 (dd, $2 \mathrm{H}, J 2.2$ and $8.5,4-\mathrm{H}$, $\left.4^{\prime}-\mathrm{H}\right), 7.73$ (d, $\left.2 \mathrm{H}, J 2.2,6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.46$ (t, $2 \mathrm{H}, J 7.5$, benzothiazolyl $\left.5-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.35(\mathrm{t}, 2 \mathrm{H}, J 7.7$, benzothiazolyl 6 $\left.\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.94\left(\mathrm{~d}, 2 \mathrm{H}, J 8.5,3-\mathrm{H}, 3^{\prime}-\mathrm{H}\right)$ and $5.52(\mathrm{br} \mathrm{s}, 4 \mathrm{H}$, $2 \times \mathrm{NH}_{2}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; \delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 168.7$, 154.7, 150.0, 134.7, 130.9, 129.1, 127.1, 125.3, 123.1, 122.8, 122.7, 121.9 and 116.0; and 2,2'-diamino-5,5'-bis(benzothiazol-2-yl)-3-trifluoromethylsulfonyloxybiphenyl 41 (23%), mp $185^{\circ} \mathrm{C}$ (dec) [Found: C, $54.3 ; \mathrm{H}, 3.0 ; \mathrm{N}, 9.1 \%$; (M + H) ${ }^{+}$, 599.0493. $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{3}$ requires C, $54.2 ; \mathrm{H}, 2.9 ; \mathrm{N}, 9.4 \%$; $M+\mathrm{H}, 599.0493] ; v_{\max } / \mathrm{cm}^{-1} 3465,3387,1625,1473,1420$, $1221,1138,921,756,726$ and $601 ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 8.08-7.99(\mathrm{~m}, 5$ H), 7.96 (d, 1 H, $J 1.9$), 7.90 (d, $2 \mathrm{H}, J 7.9$), 7.54-7.34 (m, 4 H), 6.93 (dd, $1 \mathrm{H}, J 1.5$ and 7.5), $4.40\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$) and 4.10 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 168.0, 166.1, 154.4, 154.2, 147.1, 140.0, 137.2, 135.1, 135.0, 130.8, 130.5, 130.1, 126.9, 126.6, 126.3, 125.5, 125.1, 125.0, 124.7, 123.4, 123.1, $122.0,121.9,121.5,121.2$ and 116.2.

2-(3-Hydroxy-4-trifluoromethylsulfonamidophenyl)benzothiazole 31

The amine $26(0.1 \mathrm{~g})$ was refluxed with 10% aqueous potassium hydroxide ($15 \mathrm{~cm}^{3}$) and methanol ($10 \mathrm{~cm}^{3}$) for 2 h and the product was extracted into ethyl acetate. The extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure to give $31(0.078 \mathrm{~g}, 78 \%), \mathrm{mp} 235-$ $237^{\circ} \mathrm{C}$ (Found: C, $44.75 ; \mathrm{H}, 2.4 ; \mathrm{N}, 7.35 \% ; \mathrm{M}^{+}, 374$. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, 44.9; $\mathrm{H}, 2.4 ; \mathrm{N}, 7.5 \% ; M, 374$); $v_{\max } / \mathrm{cm}^{-1} 3353,1480,1447,1390,1210,1137,954$ and 752.

2-(4-Trifluoroacetamido-3-trifluoromethylsulfonyloxyphenyl)benzothiazole 34

The amine $26(0.1 \mathrm{~g})$ was treated with TFAA $\left(2 \mathrm{~cm}^{3}\right)$ at room temperature and the reaction mixture was extracted with ethyl acetate. The combined organic extracts were washed with
water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the benzothiazole $34\left(0.085 \mathrm{~g}, 68 \%\right.$) (Found: C, $40.6 ; \mathrm{H}, 2.1 ; \mathrm{N}, 11.15 \% ; \mathrm{M}^{+}, 470$. $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires C, $40.85 ; \mathrm{H}, 1.7 ; \mathrm{N}, 10.85 \% ; M, 470$); $v_{\max } / \mathrm{cm}^{1} 3448,3304,1720,1531,1417,1220,1162,1138,912$, 831, 765 and 616.

2-(4-Amino-3-hydroxyphenyl)benzothiazole 37

(1) The amine $31(0.078 \mathrm{~g})$ was treated with 80% sulfuric acid (4 cm^{3}) at $175^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured into water, neutralised with $5 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide and extracted with ethyl acetate. The combined extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to yield the aminophenol $37(0.042 \mathrm{~g}, 83 \%), \mathrm{mp} 215-217^{\circ} \mathrm{C}$ (Found: M^{+}, 242. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$ requires $M, 242$); $v_{\text {max }} / \mathrm{cm}^{-1} 3398,1613$, 1477, 1439, 1306, 1227 and 756.
(2) The same hydroxyphenylbenzothiazole 37 (94%) was formed when the triflate ester 34 was hydrolysed with 10% aqueous potassium hydroxide in a mixture of methanol and water ($1: 1$).

Decomposition of 2-(4-azidophenyl)-6-methylbenzothiazole 16

Chromatographic fractionation of the reaction mixture (EtOAc-petroleum ether) afforded the following: 2-(4-amino-3-trifluoromethylsulfonyloxyphenyl)-6-methylbenzothiazole 27 (14%) [eluting with EtOAc-light petroleum (1:4)], mp 147$149^{\circ} \mathrm{C}$ (Found: C, $46.2 ; \mathrm{H}, 3.1 ; \mathrm{N}, 7.5 \% ; \mathrm{M}^{+}, 388.0163$. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, 46.4; H, 2.8; N, 7.2\%; M, 388.0163); $v_{\text {max }} / \mathrm{cm}^{-1} 3364,1627,1487,1410,1211,1141$ and 828; 2,2'-diamino-5,5'-bis(6-methylbenzothiazol-2-yl)bipheny/42 (32%) [eluting with EtOAc-light petroleum ($1: 1$)], mp 309$312{ }^{\circ} \mathrm{C}$ [Found: C, 70.1; H, 4.5; N, 11.95\%; (M + H $)^{+}$, 479.1364. $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 70.3 ; \mathrm{H}, 4.6 ; \mathrm{N}, 11.7 \%$; $M+\mathrm{H}, 479.1364] ; v_{\max } / \mathrm{cm}^{-1} 3465,3368,1619,1475,1452$, 1401, 1306, 1225, 1154 and 818; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO) 7.85 (d, 2 H , J 2.2, H-6, H-6'), $7.82-7.78$ (m, $4 \mathrm{H}, 4-\mathrm{H}, 4^{\prime}-\mathrm{H}$, benzothiazolyl $\left.4-\mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.70\left(\mathrm{~d}, 2 \mathrm{H}, J 2.1\right.$, benzothiazolyl $\left.7-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 7.28$ (dd, $2 \mathrm{H}, J 1.3$ and 8.4, benzothiazolyl $5-\mathrm{H}, 5^{\prime}-\mathrm{H}$), 6.93 (d, 2 H , $\left.J 8.5,3-\mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.49\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{NH}_{2}\right.$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$) and 2.43 (s, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 167.6$, $152.9,149.8,135.0,134.8,130.8,128.9,128.5,123.2,122.5$, 122.4, 122.1, 116.0 and 21.9; and 2, 2^{\prime}-diamino-3-trifluoromethyl-sulfonyloxy-5,5'-bis(6 -methylbenzothiazol-2-yl)biphenyl 43 (18%) [eluting with EtOAc-light petroleum (3:7)], mp $222{ }^{\circ} \mathrm{C}$ (dec.) (from $\mathrm{CHCl}_{3}-\mathrm{EtOH}$) [Found: C, $55.5 ; \mathrm{H}, 3.5 ; \mathrm{N}, 9.2 \%$; $(\mathrm{M}+\mathrm{H})^{+}, 627.0806 . \mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{3}$ requires C, $55.6 ; \mathrm{H}$, 3.35; N, $8.9 \% ; M+\mathrm{H}, 627.0806] ; v_{\max } / \mathrm{cm}^{-1} 3439,1626,1475$, $1420,1402,1218,1150$ and $813 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.05(\mathrm{~d}, 1 \mathrm{H}, J 1.9)$, $8.01-7.88$ (m, 5 H$), 7.69(\mathrm{~s}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, 1$ $\mathrm{H}, J 8.3$), 4.37 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 4.07 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$) and $2.51(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 167.0,165.2,152.6,152.5,146.9,139.8$, $137.1,135.7,135.3,135.2,135.1,130.6,130.3,129.8,128.4$, 128.2, 126.4, 124.9, 124.6, 122.8, 122.5, 121.8, 121.7, 121.5, 120.9, 116.1 and 21.9.

2-(3-Hydroxy-4-trifluoromethylsulfonamidophenyl)-6-methylbenzothiazole 32

The amine $27(0.1 \mathrm{~g})$ was refluxed with 10% aqueous potassium hydroxide ($15 \mathrm{~cm}^{3}$) and methanol ($10 \mathrm{~cm}^{3}$) for 0.5 h and the product was extracted into ethyl acetate. The extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure to give benzothiazole 32 (75%) (Found: $\mathrm{C}, 46.7 ; \mathrm{H}, 3.1 ; \mathrm{N}, 7.5 \% ; \mathrm{M}^{+}, 388 . \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, 46.4; H, 2.8; N, $7.2 \% ; M, 388)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3446,1605,1447$, 1385, 1230, 1206, 1139, 806 and 619.

6-Methyl-2-(4-trifluoroacetamido-3-trifluoromethylsulfonyloxyphenyl) benzothiazole 35
The amine $27(0.1 \mathrm{~g})$ was treated with TFAA $\left(2 \mathrm{~cm}^{3}\right)$ at room temperature and the reaction mixture was extracted with ethyl acetate. The combined organic extracts were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give $35(65 \%)$ (Found: $\mathrm{C}, 43.0 ; \mathrm{H}, 2.0 ; \mathrm{N}, 6.2 \% ; \mathrm{M}^{+}, 472 . \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 43.2 ; \mathrm{H}, 2.1 ; \mathrm{N}, 5.9 \% ; M, 472) ; v_{\max } / \mathrm{cm}^{-1} 3430,1716,1535$, $1422,1289,1215,1165,1137,923,826$ and 620.

2-(4-Amino-3-hydroxyphenyl)-6-methylbenzothiazole 38

Hydrolysis of 35 in boiling 10% aqueous potassium hydroxide gave $38(85 \%)$ (Found: $\mathrm{M}^{+}, 256 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$ requires M, 256); $v_{\text {max }} / \mathrm{cm}^{-1} 3440,1618,1482,1447,1400,1302,1225$ and 808.

Decomposition of 2-(4-azido-2-fluorophenyl)benzothiazole 17

According to the general procedure, the reaction products were dissolved in dichloromethane. The precipitate formed was filtered off and identified as $2,2^{\prime}$-diamino-4,4'-difuoro-5,5'-bis(benzothiazol-2-yl)biphenyl 44 (11%), mp $348-350^{\circ} \mathrm{C}$ (Found: C, 64.5; H, 3.6; N, 11.8\%; M ${ }^{+}$, 486. $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires C, $64.2 ; \mathrm{H}, 3.3 ; \mathrm{N}, 11.5 \% ; M, 486$); $v_{\text {max }} / \mathrm{cm}^{-1} 3463$, 3357, 1624, 1460, 1430, 1252, 1165 and 763; $\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right]$ DMSO $)$ 8.08 (d, 2 H, $J 7.9$, benzothiazolyl 7-H, $7^{\prime}-\mathrm{H}$), 7.79 (d, $2 \mathrm{H}, J$ 8.8, 6-H, $\left.6^{\prime}-\mathrm{H}\right), 7,93\left(\mathrm{~d}, 2 \mathrm{H}, J 8.1\right.$, benzothiazolyl 4-H, $4^{\prime}-\mathrm{H}$), 7.48 (t, $2 \mathrm{H}, J 8.0$, benzothiazolyl $5-\mathrm{H}, 5^{\prime}-\mathrm{H}$), $7.37(\mathrm{t}, 2 \mathrm{H}, J 7.8$, benzothiazolyl $\left.6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.70\left(\mathrm{~d}, 2 \mathrm{H}, J 14.3,3-\mathrm{H}, 3^{\prime}-\mathrm{H}\right)$ and 5.87 (br s, $4 \mathrm{H}, 2 \times \mathrm{NH}_{2}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$).

The soluble products were chromatographed to give 2-(4-amino-2-fluoro-5-trifluoromethylsulfonyloxyphenyl)benzothia-.
zole 28 (31%) [eluting with EtOAc-hexane (1:4)], mp 146$148^{\circ} \mathrm{C}$ (light petroleum- CHCl_{3}) (Found: C, $43.0 ; \mathrm{H}, 2.3 ; \mathrm{N}$, 7.4%; M^{+}, 392. $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, $42.85 ; \mathrm{H}, 2.0 ; \mathrm{N}$, $7.1 \% ; M, 392) ; v_{\max } / \mathrm{cm}^{-1} 3469,3379,1638,1408,1234,1209$, 1138, 871 and 760; 2-(2-fluoro-4-trifluoroacetamido-5-trifluoromethylsulfonyloxyphenyl)benzothiazole 36 (1.1%) [eluting with EtOAc-hexane ($1: 4$)], $\mathrm{mp} 144-147^{\circ} \mathrm{C}$ (from MeOH) (Found: M^{+}, 434. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ requires M, 434); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3424,1736,1629,1548,1428,1215,1176,1137,916,871$, 851, 762 and 623; and 2,2'-diamino-4,6'-difuoro-5,5'-bis-(benzothiazol-2-yl) biphenyl 45 (8%) [eluting with EtOAchexane (1:1)], $\mathrm{mp} 238-240^{\circ} \mathrm{C}$ (from CHCl_{3}) [Found: $\mathrm{C}, 64.0$; $\mathrm{H}, 3.2 ; \mathrm{N}, 11.8 \% ;(\mathrm{M}+\mathrm{H})^{+}, 487.0863 . \quad \mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 64.2 ; \mathrm{H}, 3.3 ; \mathrm{N}, 11.5 \% ; M+\mathrm{H}, 487.0863]$; $v_{\max } / \mathrm{cm}^{-1} 3400,1625,1460,1430,1316,1254,1166$ and 757; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.36(\mathrm{t}, 1 \mathrm{H}, J 8.4), 8.28(\mathrm{~d}, 1 \mathrm{H}, J 8.1), 8.09(\mathrm{~d}, 1 \mathrm{H}, J$ 7.9), 8.00 (d, $1 \mathrm{H}, J 7.8$), 7.92-7.86 (m, 2 H), 7.52-7.43 (m, 2 H), 7.36 (t, 2 H, J7.6), 6.74 (d, 1 H, J 8.6), 6.67 (d, 1 H, J12.8), 4.22 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$) and 3.59 (br s, 2 H , NH_{2}, exchangeable with $\mathrm{D}_{2} \mathrm{O}$).

2-(2-Fluoro-5-hydroxy-4-trifluoromethylsulfonamidophenyl)benzothiazole 33

The amine $28(0.1 \mathrm{~g})$ was heated in boiling 10% aqueous potassium hydroxide ($15 \mathrm{~cm}^{3}$) and methanol ($10 \mathrm{~cm}^{3}$) for 0.5 h and the rearranged product was extracted into ethyl acetate. The extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure to give 33 (75%) (Found: C, 43.05; H, 2.3; N, 7.45\%; M^{+}, 392. $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 42.85 ; \mathrm{H}, 2.0 ; \mathrm{N}, 7.1 \% ; M, 392) ; v_{\max } / \mathrm{cm}^{-1} 3416$, $1621,1523,1430,1288,1203,1185,1134,757$ and 630.

2-(4-Amino-2-fluoro-5-hydroxyphenyl)benzothiazole 39

Hydrolysis of either the triflate ester 36 with 10% aqueous
potassium hydroxide or the trifluoromethylsulfonamide 33 with 80% sulfuric acid at $175^{\circ} \mathrm{C}$ for 0.5 h afforded hydroxyphenylbenzothiazole 39 in 75 and 85% yields, respectively (Found: C, 59.9; H, 3.2; N, 10.95\%, M ${ }^{+}, 260$. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{OS}$ requires $\mathrm{C}, 60.0 ; \mathrm{H}, 3.5 ; \mathrm{N}, 10.8 \% ; M, 260$); $v_{\text {max }} / \mathrm{cm}^{-1} 3407,1628,1434,1308,1210,1147$ and 756.

Decomposition of 2-(4-azido-2-chlorophenyl)benzothiazole 18

Chromatographic fractionation of the products using EtOAchexane (1:4) as the eluent afforded 2-(4-amino-2-chloro-5trifluoromethylsulfonyloxyphenyl)benzothiazole 29 (25%), mp $153-154{ }^{\circ} \mathrm{C}$ (from light petroleum- CHCl_{3}) [Found: $\mathrm{C}, 41.4 ; \mathrm{H}$, $1.8 ; \mathrm{N}, 6.65 \% ; \mathrm{M}^{+}, 408(410) . \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, 41.1; H, 2.0; N, 6.85\%; M, 408 (410)]; $v_{\max } / \mathrm{cm}^{-1} 3450,3368$, 1637, 1408, 1232, 1209, 1138, 852, 759 and 615; and 2-(4-amino-2-chloro-3-trifluoromethylsulfonyloxyphenyl)benzothiazole $\mathbf{3 0}$ (18%) [Found: C, $40.9 ; \mathrm{H}, 1.9 ; \mathrm{N}, 6.5 \% ; \mathrm{M}^{+}, 408$ (410). $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, 41.1; H, $2.0 ; \mathrm{N}, 6.85 \% ; M, 408$ (410)]; $v_{\text {max }} / \mathrm{cm}^{-1} 3402,1627,1406,1231,1132,887,851,758$ and 658 .

2,2'-Diamino-5,5'-bis(benzoxazol-2-yl)biphenyl 46

Azide 19 (1.4 g) was treated with TFSA ($7 \mathrm{~cm}^{3}$) in TFA ($8 \mathrm{~cm}^{3}$) and TFAA $\left(1.5 \mathrm{~cm}^{3}\right)$ according to the general procedure. The crude product chromatographed on silica gel using EtOAchexane ($1: 1$) as the eluent to give a buff solid ($0.82 \mathrm{~g}, 66 \%$), mp $176-179{ }^{\circ} \mathrm{C}$ [Found: C, $74.2 ; \mathrm{H}, 4.1 ; \mathrm{N}, 13.1 \%$; $(\mathrm{M}+\mathrm{H})^{+} 419$. $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $74.6 ; \mathrm{H}, 4.3 ; \mathrm{N}, 13.4 \% ; M+\mathrm{H}, 419$]; $v_{\text {max }} / \mathrm{cm}^{-1} 3381,3330,3205,1619,1485,1454,1243,1140$ and $744 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 7.97\left(\mathrm{dd}, 2 \mathrm{H}, J 1.9\right.$ and $\left.8.5,4-\mathrm{H}, 4^{\prime}-\mathrm{H}\right)$, 7.84 (d, $\left.2 \mathrm{H}, J 1.9,6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}$, benzoxazolyl $\left.5-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.70-7.67(\mathrm{~m}, 4 \mathrm{H}$, benzoxazolyl $4-\mathrm{H}$, $\left.4^{\prime}-\mathrm{H}, 7-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 6.79$ (d, $\left.2 \mathrm{H}, J 8.5,3-\mathrm{H}, 3^{\prime}-\mathrm{H}\right)$ and $5.62(\mathrm{br} \mathrm{s}$, $4 \mathrm{H}, 2 \times \mathrm{NH}_{2}$, exchangeable with $\left.\left.\mathrm{D}_{2} \mathrm{O}\right) ; \delta_{\mathrm{c}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ $164.2,150.8,150.4,142.9,131.3,129.1,125.3,125.1,122.9$, 119.7, 116.0, 114.6 and 111.2.

2,2'-Bis(acetamido)-5,5'-bis(benzothiazol-2-yl)biphenyl 47

Acetylation of the biphenyl $\mathbf{4 0}$ with acetic anhydride at room temperature gave $47(92 \%), \mathrm{mp} 325-327^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: $\mathrm{C}, 67.1 ; \mathrm{H}, 4.0 ; \mathrm{N}, 10.6 \% ; \mathrm{M}^{+}, 534 . \mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C , 67.4 ; H, 4.1; N, $10.5 \% ; M, 534$); $v_{\max } / \mathrm{cm}^{-1} 3408,2924,1698$, 1618, 1508, 1409, 1256, 1215, 1090 and 906; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ 9.19 (s, $2 \mathrm{H}, 2 \times \mathrm{NH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 8.18-8.14 (m, 4 H, 4-H, $4^{\prime}-\mathrm{H}$, benzothiazolyl $7-\mathrm{H}, 7^{\prime}-\mathrm{H}$), 8.07 (d, $2 \mathrm{H}, J 7.5$, benzothiazolyl 4-H, $4^{\prime}-\mathrm{H}$), 8.02 (d, $\left.2 \mathrm{H}, J 2.1,6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.94$ (d, $\left.2 \mathrm{H}, J 8.53-\mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.56(\mathrm{dt}, 2 \mathrm{H}, J 1.3$ and 7.6 , benzothiazolyl $5-\mathrm{H}, 5^{\prime}-\mathrm{H}$), 7.47 (dt, $2 \mathrm{H}, J 1.3$ and 7.6 , benzothiazolyl $6-\mathrm{H}, 6^{\prime}-\mathrm{H}$) and $1.90\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(\mathrm{TFA})$ 175.4, 172.2, 140.8, 140.5, 132.6, 131.1, 130.8, 130.6, 129.7, 129.6, 127.8, 124.0, 123.1, 117.5 and 21.6.

2,2'-Bis(acetamido)-5,5'-bis(benzoxazol-2-yl)biphenyl 48

Acetylation of the biphenyl 46 with acetic anhydride at room temperature gave $48(89 \%)$, mp $285-287^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: $\mathrm{C}, 71.55 ; \mathrm{H}, 4.4 ; \mathrm{N}, 11.0 \% ; \mathrm{M}^{+}$, $502 . \mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C , 71.7, H, 4.4; N, 11.15%; $M, 502$); $v_{\text {max }} / \mathrm{cm}^{-1} 3414,3307,1675$, $1585,1510,1453,1304,1242$ and $745 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 9.21$ (s, $2 \mathrm{H}, 2 \times \mathrm{NH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $8.24(\mathrm{dd}, 2 \mathrm{H}, J 1.6$ and 8.4, 4-H, 4'-H), 8.12 (d, 2 H, J1.6, 6-H, $6^{\prime}-\mathrm{H}$), 7.99 (d, 2 H, J8.5, 3-H, 3'-H), 7.83-7.79 (m, 4 H, benzoxazolyl 4-H, 4'-H, 7-H, 7'H), 7.47-7.39 (m, 4 H , benzoxazolyl $\left.5-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$ and $1.90\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 169.8,162.9,151.1$, $142.5,140.1,132.3,131.1,128.2,126.4,126.3,125.8,123.5$, 120.6, 111.8 and 24.1.

2,9-Bis(benzothiazol-2-yl)benzo[c]cinnoline 49

A mixture of $\mathbf{4 0}(0.09 \mathrm{~g})$ and DAIB $(0.013 \mathrm{~g})$ in dry toluene (15 cm^{3}) was stirred at $25^{\circ} \mathrm{C}$ for 2 days. The solvent was removed under reduced pressure, the product was adsorbed on silica gel (2 g) and chromatographed using EtOAc-hexane (1:1) as the eluent to give pale yellow crystals of the benzocinnoline 49 ($0.06 \mathrm{~g}, 62 \%$), mp $316^{\circ} \mathrm{C}$ (dec.) (Found: C, 70.2; H, 2.85; N, $12.2 \% ; \mathrm{M}^{+}$, 446.0664. $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires C, 69.95; H, 3.1; $\mathrm{N}, 12.55 \% ; M, 446.0660) ; v_{\text {max }} / \mathrm{cm}^{-1} 1614,1426,1314,1143$, 1091, 759 and $724 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.53(\mathrm{~d}, 2 \mathrm{H}, J 1.8,1-\mathrm{H}, 10-\mathrm{H})$, 8.94, (d, 2 H, J8.6, 4-H, 7-H), 8.67 (dd, 2 H, J 1.7 and 8.6, 3-H, 8-H), 8.28-8.24 (m, 2 H, benzothiazolyl 7-H, $7^{\prime}-\mathrm{H}$), 8.08-8.04 ($\mathrm{m}, 2 \mathrm{H}$, benzothiazolyl $4-\mathrm{H}, 4^{\prime}-\mathrm{H}$) and $7.64-7.51(\mathrm{~m}, 4 \mathrm{H}$, benzothiazolyl $\left.5-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}($ TFA) 169.5, 143.6 , $142.1,133.8,132.7,132.3,131.9,131.4,131.0,127.5,124.2$, 123.6 and 118.9 .

2,9-Bis(6-methylbenzothiazol-2-yl)benzo[c]cinnoline 50

The biphenyl $\mathbf{4 2}$ was subjected to DAIB oxidation as described above to give the benzocinnoline 50, $\mathrm{mp} 305-307^{\circ} \mathrm{C}$ (Found: C, 70.8; $\mathrm{H}, 4.1 ; \mathrm{N}, 12.1 \% ; \mathrm{M}^{+}, 474.0958 . \mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 70.9 ; \mathrm{H}, 3.8 ; \mathrm{N}, 11.8 \% ; M, 474.0973) ; v_{\text {max }} / \mathrm{cm}^{-1} 3441$, 2924, 2854, 1606, 1459, 1137 and $831 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.33$ (d, 2 $\mathrm{H}, J 1.5,1-\mathrm{H}, 10-\mathrm{H}), 8.82(\mathrm{~d}, 2 \mathrm{H}, J 8.6,4-\mathrm{H}, 7-\mathrm{H}), 8.54$ (dd, $2 \mathrm{H}, J 1.6$ and $8.6,3-\mathrm{H}, 8-\mathrm{H}$), 8.07 (d, $2 \mathrm{H}, J 8.4$, benzothiazolyl 4-H, 4'-H), 7.75 (d, $2 \mathrm{H}, J 1.2$, benzothiazolyl $7-\mathrm{H}, 7^{\prime}-\mathrm{H}$), 7.38 (dd, $2 \mathrm{H}, J 1.2$ and 8.4 , benzothiazolyl $5-\mathrm{H}$, $\left.5^{\prime}-\mathrm{H}\right)$ and $2.55\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 165.9,152.6$, 146.1, 136.7, 136.5, 136.0, 132.5, 128.8, 128.7, 123.6, 121.8, 121.4, 120.6 and 22.0.

2,9-Bis(benzoxazol-2-yl)benzo[c]cinnoline 51

The biphenyl 46 was subjected to DAIB oxidation to give the benzocinnoline 51, mp 331-333 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 75.15 ; \mathrm{H}, 3.3$; N, $13.15 \% ; \mathrm{M}^{+}$, 414.1110. $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 75.4; $\mathrm{H}, 3.4$; $\mathrm{N}, 13.5 \% ; M, 414.1117) ; v_{\max } / \mathrm{cm}^{-1} 3061,1619,1543,1413,1384$, 1243, 1213, 1141, 1059, 882 and $744 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.62(\mathrm{~d}, 2 \mathrm{H}, J$ $1.5,1-\mathrm{H}, 10-\mathrm{H}), 8.96$ (d, $2 \mathrm{H}, J 8.6,4-\mathrm{H}, 7-\mathrm{H}), 8.79$ (dd, 2 H, J 1.6 and 8.6, 3-H, 8-H), 7.98-7.90 (m, 2 H , benzoxazolyl 4-H, $4^{\prime}-\mathrm{H}$), 7.78-7.74 ($\mathrm{m}, 2 \mathrm{H}$, benzoxazoly1 7-H, $7^{\prime}-\mathrm{H}$) and 7.53-7.40 ($\mathrm{m}, 4$ H , benzoxazolyl $\left.5-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 161.8,151.5$, 146.3, 142.4, 132.8, 130.4, 128.6, 126.7, 125.6, 121.8, 121.3, 121.0 and 111.4 .

4,4'-Bis(benzothiazol-2-yl)diphenyldiazene 62

(1) A mixture of the diphenyldiazene acid chloride $61(1.5 \mathrm{~g})$ (prepared from the corresponding dicarboxylic acid) ${ }^{23}$ and 2-aminobenzenthiol ($1.26 \mathrm{~g}, 0.01 \mathrm{~mol}$) in pyridine ($10 \mathrm{~cm}^{3}$) was stirred at $135^{\circ} \mathrm{C}$ for 6 h . The precipitate was filtered off, washed with water and recrystallised from nitrobenzene to furnish metallic orange crystals ($1.51 \mathrm{~g}, 69 \%$) $\mathrm{mp} 308-$ $310^{\circ} \mathrm{C}$ (Found: C, $69.5 ; \mathrm{H}, 3.5 ; \mathrm{N}, 12.25 \% ; \mathrm{M}^{+}, 448$. $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires C, 69.6; H, 3.6; $\mathrm{N}, 12.5 \% ; M, 448$); $v_{\text {max }} / \mathrm{cm}^{-1} 3050,1476,1432,1409,1384,1314,1251,1221$, 1106, 964, 854, 753, 725, 696, 621, 564 and $528 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 8.22 (d, 4 H, $\left.J 8.5,2-\mathrm{H}, 2^{\prime}-\mathrm{H}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 8.05$ (m, $6 \mathrm{H}, J 8.5$, $3-\mathrm{H}, 3^{\prime}-\mathrm{H}, 5-\mathrm{H}, 5^{\prime}-\mathrm{H}$ and benzothiazolyl $7-\mathrm{H}, 7^{\prime}-\mathrm{H}$), $7.88(\mathrm{~d}$, $2 \mathrm{H}, J 7.9$, benzothiazolyl $4-\mathrm{H}, 4^{\prime}-\mathrm{H}$), 7.47 (m, 2 H , benzothiazolyl $5-\mathrm{H}, 5^{\prime}-\mathrm{H}$) and $7.37(\mathrm{~m}, 2 \mathrm{H}$, benzothiazolyl $6-\mathrm{H}$, $\left.6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}$ (TFA) 173.3, 156.4, 140.4, 131.1, 129.7, 129.6, 129.5, 127.4, 125.0, 123.0 and 117.5.
(2) A mixture of amine $8(2.5 \mathrm{~g}, 0.011 \mathrm{~mol})$ and DAIB in dry toluene ($150 \mathrm{~cm}^{3}$) was stirred at $25^{\circ} \mathrm{C}$ for 2 days. The precipitate was filtered off, washed with diethyl ether and water and finally crystallised from nitrobenzene to give the same azo compound $62(1.1 \mathrm{~g})$.

1,2-Bis[4-(benzothiazol-2-yl)phenyl]diazane 63

(1) The azo compound $62(1.18 \mathrm{~g}, 2.631 \mathrm{mmol})$ was, reduced with tin(II) chloride dihydrate ($5.4 \mathrm{~g}, 22.16 \mathrm{mmol}$) in 10 mol dm^{-3} hydrochloric acid $\left(24 \mathrm{~cm}^{3}\right)$ at $25^{\circ} \mathrm{C}$ for 2.5 h . The reaction mixture was basified with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ and extracted several times with ethyl acetate. The organic phase was washed with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(2 \times 150 \mathrm{~cm}^{3}\right)$ and water $(2 \times 150$ $\left.\mathrm{cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated. The crude hydrazobenzene was crystallised twice from EtOAc$\mathrm{CHCl}_{3}(2: 1)$ to give a pale yellow powder ($0.5 \mathrm{~g}, 42 \%$), mp $275-277{ }^{\circ} \mathrm{C}$ (Found: C, $69.1 ; \mathrm{H}, 3.7 ; \mathrm{N}, 12.1 \% ; \mathrm{M}^{+}, 450$. $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires C, 69.3; $\mathrm{H}, 4.0 ; \mathrm{N}, 12.4 \% ; M, 450$); $v_{\text {max }} / \mathrm{cm}^{-1} 3347,3260,3057,3024,1605,1483,1435,1384,1314$, $1268,1225,1177,1117,966,825,755,726,693$ and 632 ; $\delta_{\mathrm{H}}\left(\left[\mathrm{H}_{6}\right] \mathrm{DMSO}\right) 8.54(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHNH}$, exchangeable with $\mathrm{CD}_{3} \mathrm{OD}$), 8.02 (d, $2 \mathrm{H}, J 7.1$, benzothiazolyl $4-\mathrm{H}, 4^{\prime}-\mathrm{H}$), 7.94 $7.83\left(\mathrm{~m}\right.$, includes d, $6 \mathrm{H}, J 8.6,3-\mathrm{H}, 3^{\prime}-\mathrm{H}, 5-\mathrm{H}, 5^{\prime}-\mathrm{H}$ and benzothiazolyl 7-H, $7^{\prime}-\mathrm{H}$), 7.46 (t, $2 \mathrm{H}, J 7.7$, benzothiazoly1 5H, $\left.5^{\prime}-\mathrm{H}\right), 6.87\left(\mathrm{t}, 2 \mathrm{H}, J 7.6\right.$, benzothiazolyl $\left.6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$ and 2.48 (d, 4 H, J 8.8, 2-H, $2^{\prime}-\mathrm{H}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}$); δ_{c} (TFA) 173.8, 155.4 , $139.9,130.6,130.1,128.4,128.0,122.7,116.3,115.7$ and 112.8.
(2) The same diphenyldiazane 63 (85%) was obtained by catalytic hydrogenation of the diphenyldiazene 62 in acetic acid over 10% palladium on charcoal catalyst at $50 \mathrm{psi} \dagger$ of hydrogen (30 h).

Disproportionation of the diphenyldiazane 63

(1) The diphenyldiazane $63(0.2 \mathrm{~g})$ was treated with triflic mixture according to the general procedure for the decomposition of azido compounds at $0^{\circ} \mathrm{C}$, followed by stirring at room temperature for 6 h and basification with iceaqueous ammonia. Products were extracted with ethyl acetate. After evaporation of the solvent, the residue was adsorbed onto silica gel and chromatographed [EtOAc-hexane ($1: 2$), EtOAc$\mathrm{MeOH}(1: 1)]$ to afford the amine 8 and the azobenzene 62 which were identical (mp, TLC and NMR) with authentic products.
(2) The diphenyldiazane $63(0.2 \mathrm{~g})$ was dissolved in hot ethyl acetate ($200 \mathrm{~cm}^{3}$) (under nitrogen). $5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ Sulfuric acid (15 cm^{3}) was added dropwise at reflux temperature. The mixture was stirred (1 h), cooled and neutralised with cold $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide. The organic phase was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed. TLC examination of the mixture revealed the presence of the amine 8 and diphenyldiazene 62.

Acknowledgements

We thank the Cancer Research Campaign, UK for financial support of this work and an Overseas Research Students Award (to D. F. S.)
$\dagger \mathrm{psi}=6.89 \mathrm{kPa}$.

References

1 Part 1, M. F. G. Stevens, C. J. McCall, P. Lelieveld, P. Alexander, A. Richter and D. E. Davies, J. Med. Chem., 1994, 37, 1689. This paper was also designated Part 23 in the series 'Structural Studies on Bioactive Compounds.'
2 M. F. G. Stevens, C. J. McCall and P. Lelieveld, International Application, PCT/GB94/01883.
3 R. A. Abramovitch, P. Chinnasamy, K. Evertz and G. Huttner J. Chem. Soc., Chem. Commun., 1989, 3

4 E. F. V. Scriven and K. Turnbull, Chem. Rev., 1988, 88, 298.
5 M. F. G. Stevens, W. K. Chui and M. A. Castro, J. Heterocycl. Chem., 1993, 30, 849.
6 E. A. Bliss, R. J. Griffin and M. F. G. Stevens, J. Chem. Soc., Perkin Trans. 1, 1989, 2217.

7 M. A. Castro and M. F. G. Stevens, J. Chem. Soc., Chem. Commun., 1992, 869.
8 I. M. McRobbie, O. Meth-Cohn and H. Suschitzky, Tetrahedron Lett., 1976, 929.
9 H. J. Shine and J. P. Stanley, J. Org. Chem., 1967, 32, 905.
10 H. Takeuchi and K. T. Takano, J. Chem. Soc., Perkin Trans. 1, 1986, 611.

11 T. Ohta, R. Machida, K. Takeda, Y. Endo, K. Shudo and T. Okamoto, J. Am. Chem. Soc., 1980, 102, 6385.

12 T. Okamoto, K. Shudo and T. Ohta, J. Am. Chem. Soc., 1975, 97, 7184.

13 R. A. Abramovitch, R. Jeyaranan and K. Yannakopoulou, J. Chem. Soc., Chem. Commun., 1985, 1107.
14 R. A. Abramovitch, M. Cooper, S. Iyer, R. Jeyaranan and J. A. R. Rodriguez, J. Org. Chem., 1992, 47, 4819.

15 P. C. Yates, C. J. McCall and M. F. G. Stevens, Tetrahedron, 1991, 47, 6493.

16 D. Hawkins, J. M. Lindley, I. M. McRobbie and O. Meth-Cohn, J. Chem. Soc., Perkin Trans. I, 1980, 2387.

17 M. T. Bogert and H. B. Corbitt, J. Am. Chem. Soc., 1926, 48, 783.
18 D. W. Hein, R. J. Alheim and J. J. Leavitt, J. Am. Chem. Soc., 1957, 79, 427.
19 H. Rivier and J. Zeltner, Helv. Chim. Acta, 1937, 20, 691
20 R. S. Varma and S. Chauhan, Ind. J. Chem., 1988, 27B, 438.
21 P. B. Tripathy and E. Jena, J. Inst. Chem. (India), 1970, 42, 65
22 T. Tsunoda, S. Maeda and Y. Hata, Jpn. Kokai Tokkyo Koho, 7394, 419 (Chem. Abstr., 1974, 80, 102348p).
23 M. L. Tomlinson, J. Chem. Soc., 1946, 756.

Paper 5/04375A
Received 5th July 1995
Accepted 3rd August 1995

[^0]: Solvent for ${ }^{1} \mathrm{H}$ NMR: CDCl_{3}; coupling constants (Hz) are in parentheses. ${ }^{b}{ }^{6}$ All NH_{2} signals appeared as broad singlets, exchangeable with $\mathrm{D}_{2} \mathrm{O}$. ${ }^{c}$ Solvent: $\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO.

